The Synthesis and Characterization of Substituted Olivines and Layered Manganese Oxides # M. Stanley Whittingham State University of New York at Binghamton May 20, 2009 Project ID # es_22_whittingham ### **Overview** #### **Timeline** - Project start date: 06-01-2007 - Project end date: 05-31-2010 - Percent complete: Continuing ### **Budget** - Total project funding - DOE share: 100% \$ - Contractor share: Personnel - Funding received - FY08: 188k\$ - FT09: 265k\$ - Funding requested - FY10: 280k\$ ### **Barriers** - Barriers addressed - Lower-cost, - Higher power, - Higher capacity and - Abuse-tolerant safer cathodes ### **Partners** - SUNY Stony Brook, LBNL, BNL, U. Maryland - Primet, and other companies ### **Objectives of Work** - The primary objectives of our work are to find: - Lower-cost and higher capacity cathodes, exceeding 200 Ah/kg (lab theoretical). - High rate HEV and PHEV compatible cathodes - Both of the above are to be based on environmentally benign materials ### **Milestones** - a) Characterize the electronically stabilized manganese oxide, determine the rate capability *vs.* Co content, determine the role of Ni and understand its disorder to obtain a stable high rate abuse tolerant cathode (including application to HEVs), determine the optimum composition and compare the best samples with the base case cathodes. (Sep. 09). - **Go** - b) Determine feasibility of aliovalent doping of olivine, LiMPO₄, determine optimum particle size and evaluate other phosphate structures containing Fe and Mn and compare them with high temperature LiFePO₄. (Sept. 09) - Go doping allows nanostructure and higher capacity - c) Identify materials that can undergo more than one electron per redox center. - New project just getting underway ### **Approach to Improved Cathodes** - Place emphasis on layered manganese dioxides, modified with other transition metal compounds - Minimizing the use of cobalt; go to 20 or 10 % - Determine structure, stability and electrochemical behavior - Understand the atomic disorder, and relate to electrochemical behavior - Emphasis on role of Ni, and its tendency to migrate during cycling - Understand the impact of moving to Li-rich compounds - Place emphasis on the low cost safe transition metal phosphates - Understand their synthesis and structure, including disorder - Determine solubility ranges for isovalent mixed metals, Li(MnMgFeCu...)PO₄ - Determine aliovalent and isovalent substitution for range of metals - Search for new phosphate structures with a higher storage capacity ## Technical Accomplishments: Barriers being Addressed Stan Whittingham SUNY at Binghamton Lower-cost, higher power, higher-capacity and abuse-tolerant safer cathodes - The long-term **stability** of the MnO₂ and NiO₂ lattice - LiMnO₂ converts to spinel on charging, losing 50% capacity 5888888 - LiNiO₂ unsafe on charging, oxygen evolution - LiCoO₂ low capacity and too expensive - Determine optimum Li(MnNiCo)O₂ composition - Is 442 superior to 333? - Capacity (volumetric) and rate of Olivines, LiFePO₄ - A low cost synthesis/manufacturing process for LiFePO₄ - Low cost material needs low cost process GO last year - The high electrical resistivity of LiFePO₄ - Can substitution work? - Ideal particle size and morphology for reaction mechanism - Is a nanostructure, like the SONY tin anode, the answer? b а C 6 - What is maximum Mn in Li(Ni_yMn_zCo_{1-y-z})O₂? - Mn is lowest cost and least likely to evolve O_2 on charging (safest) - Maximum Mn is 0.5 in lithium stoichiometric material - Rate suffers for Mn > 0.5 in lithium-rich materials - The electrochemistry of LiNi_{0.4}Mn_{0.5}Co_{0.1}O₂ is good - Similar to LiNi_{0.45}Mn_{0.45}Co_{0.1}O₂; but note fading issue. Cycling at 0.5 mA/cm², 2.5 to 4.6 volts - What is optimum value of y? - 550, 991, 442 and 333 - Low charging rate of 0.1 mA/cm² - Highest cobalt gives best capacity at higher rates - But 10% cobalt gives highest capacity at intermediate rates - What is optimum value of y? - 550, 991, 442 and 333 - Equal charging and discharging rates - LiNi_{0.4}Mn_{0.4}Co_{0.2}O₂ gives highest capacities - Suggests this phase has highest charge capabilities #### **Conclusion:** 442 appears to show the best charging capability ### Solid Solution Behavior of LiFePO₄ - LiFePO₄ can be substituted on both Fe and P sites - Vanadium substitution occurs on P site: LiFeP_{1-y}V_yO₄ - Gives a nanostructured material - 50 nm crystallites in micron-sized particles - Leads to higher density - Higher capacity - Weight and volume basis 3 μm with 50 nm crystallites Collaboration with C-S Wang at U. Maryland ### Substituted LiFePO₄ shows high rate - LiFeP_{1-y}V_yO₄ for y about 5% - Formed by firing samples ground in acetone - Needs much less carbon than nanopowders - LiFeP_{1-y}V_yO₄ for y about 5% - Formed by firing samples ground in acetone - Needs much less carbon than nanopowders - Enhanced capacity - Gravimetric - Volumetric even more Collaboration with C-S Wang at U. Maryland ## Low Carbon Content critical for high capacity in LiFePO₄ - Volumetric capacity seriously impacted by: - High carbon content - Nano-materials with low tap density (not incorporated into figure) - Nanostructure with low carbon content may be the answer - PHEV needs around 1C to2C constant output - Capacity more important than power ### **Higher Capacity Cathodes: >1 Li/M** - Several materials react with more than 1 lithium - Initial studies underway to identify promising candidates - Vanadium oxides reviewed (with A. Dillon of NREL) - J. Mater. Chem., in press (2009) ### **Future Work** ### • $LiMO_2$: - Determine charge capabilities of LiMO₂ - Compare 991 and 442 with 333 - Work with C. Grey and M. Doeff to understand ion ordering - Understand why LiMO₂ capacity fades on cycling - Contrast LiFePO₄ and Li₄Ti₅O₁₂ where there is no fade ### • Phosphates - - Determine composition range of single-phase LiFeP_{1-y}V_yPO₄ - Find other iron phosphates with higher lithium contents - Higher capacity - Identify materials that can undergo more than one electron per redox center - Perform extended cycling on phosphate to determine cycling loss - Determine reaction mechanism ### Summary - Substitution in LiFePO₄ shown to be feasible - Vanadium substitution on P site leads to nanostructure - Lower conductive carbon level - Higher capacities, particularly on a volumetric basis - Opens up opportunities for LiMnPO₄ - LiMn_{0.33}Ni_{0.33}Co_{0.33}O₂ composition may not be optimum - LiMn_{0.4}Ni_{0.4}Co_{0.2}O₂ may have better charging capabilities - LiMn_{0.45}Ni_{0.45}Co_{0.1}O₂ will have lowest cost - Need to better understand ordering in the transition-metal layer - Determine role of aluminum - Technology transfer being accomplished - Students working with battery companies, e.g. Primet - Students in battery companies and at LBNL, NREL and PNNL - Publications to transfer knowledge - Collaborations - A number of collaborations are underway and are effective - Industry, Academia and National Laboratories